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TOPEWPOSIEDON  AUTONOMOUS MANEUVER EXPERIMENT 
(TAME)  IN-FLIGHT  EXECUTION 
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Autonomous spacecraft are becoming  increasingly  important  for fu ture  
space missions.  Missions will continue to become  more  ambitious  scien- 
tifically,  and will demand  more  autonomy to accomplish  complex tasks in 
uncertain  environments  and in close proximity to celestial  bodies. Af- 
fordability is now an  additional  primary  driver.  The  call is for  smaller mis- 
sions with greatly  reduced  ground  control  and  operation.  Spacecraft with 
highly autonomous,  goal-directed systems are required.  We  believe  that 
autonomy, in addition to reducing  mission  operations costs, will enable 
science objectives  not  currently  possible.  Autonomous  maneuver  plan- 
ning and  implementation is a key to future  missions. 

The  TOPEWPOSIEDON  Autonomous  Maneuver  Experiment (TAME) is 
an  experiment to provide  the necessary algorithms  for  planning  and exe- 
cuting  attitude  maneuvers  and a thrusting Orbital  Maintenance  Maneuver 
(0") autonomously. TAME'S main  module is the  planner,  an  engine 
that, along with its auxiliary  modules  and a database, will reside  on  an 
existing  satellite  processor. The database contains  certain  satellite  and 
orbit constants, as well as tables of mission  constraints. Upon  receiving 
an OMM command, the planner  requests  up-to-date  propulsion  data  from 
the  satellite's main  On-Board  Computer  (OBC),  and  then  designs  an at- 
titude  maneuver  that does not  violate  any  constraint,  geometric,  power,  or 
thermal.  Another  module,  the sequence generator,  incorporates the 
generated path  into  an OMM sequence that  avoids  violating  other  types 
of constraints,  such as the timing and  order of commands.  The  resulting 
command sequence, which  includes commands for  reconfiguring  and 
conditioning  the  satellite  and its components, is transmitted to the OBC 
for execution. 

This paper  describes  the planning  and  execution phases of the  experi- 
ment.  The  paper  presents  results  obtained from t h e  flight experiment, 
and shares lessons learned. TAME was  executed, in flight, for the first 
time November  1997. During the first flight, TAME planned a violation- 
free  maneuver  and  generated  an  executable sequence. The second 
time it will, in addition,  transfer t h e  generated sequence to the OBC, but 
the sequence will not  be executed.  The third and  the  final  time, a normal 
OMM will be planned,  transferred to the OBC, and executed.  The  re- 
maining  two flight executions are planned  for  the  spring of 1998. 
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INTRODUCTION 

A higher  lev,el of spacecraft  autonomy is becoming  increasingly  important in planning fu- 
ture space missions . Missions will continue to become more ambitious,  scientifically  and  techni- 
cally,  and will demand more  autonomy to accomplish  complex tasks in uncertain  environments 
and in close proximity to celestial  bodies. Affordability is now an  additional  primary  driver of 
autonomous  missions.  Sponsors are calling for smaller  missions with greatly  reduced  ground 
control  and  operation.  Spacecraft with highly autonomous,  goal  directed systems are required  to 
meet these new challenges. In addition to reducing  the  mission  operations cost, autonomous 
systems will enable  science  objectives not  possible with current  spacecraft  architectural  designs. 
Autonomous  maneuver  planning  and  implementation is a key  technology  for  future  missions. 

This paper  describes  the  software  design and in-flight implementation of the 
TOPEX/POSEIDON  Autonomous  Maneuver E~periment~'~ (TAME) . It describes TAME'S archi- 
tecture, its primary  module (the planner), associated  software, and t h e  results of the first of three 
planned flight experiments.  The  three  experiments will provide  proof-of-concept  technology  for  an 
important area of on-board  autonomy. 

TAME provides  the  algorithms necessary for  autonomously  planning  attitude  maneuvers 
that  execute  an  Orbital  Maintenance  Maneuver (0") without  violating constraints. An OMM is 
accomplished by pointing the  spacecraft  thruster in the  direction of t h e  requested velocity  incre- 
ment (AV), and thrusting until the  requested AV is imparted. In the TOPEX case, the velocity in- 
crement is always  imparted in the  direction of the  current  orbital  velocity  vector,  to  correct  for  drag. 
Therefore AV direction is never  commanded. 

The  planner  and its internal database resides on  an  existing satellite  processor, along 
with several  auxiliary  modules some of which  have  their  own databases. The databases contain 
certain  satellite  and  orbit constants as well as tables of mission constraints. Upon  receiving a 
maneuver AV and  other  data  from  ground commands, TAME requests tank pressures from the 
satellite's  On-Board  Computer (OBC). TAME uses the AV and  tank pressures for  computing burn 
duration.  The  planner  then generates a maneuver  plan for turning from cruise  attitude to burn 
attitude  and  back,  while  avoiding  violations of geometric,  power,  and  thermal  constraints  en  route. 
The sequence generator, merges  the  maneuver plan with predefined OMM templates, yielding  an 
OMM sequence that  avoids  violations of other  types of constraints,  such as the timing and  order 
of commands.  The OMM sequence, which  includes the commands to reconfigure  and  to  condi- 
tion the satellite  and its components, is transferred to the OBC for execution. 

This technology  demonstration is providing data to perform  costlbenefit  analysis  for 
trades between flight- and  ground-based  spacecraft  mission  operations. It is also providing ap- 
proaches for  new  paradigms in system  architecture,  ground  commanding,  and  test  and  verifica- 
tion  that are necessary for  designing highly autonomous  event-driven flight systems. 

TOPEWPOSEIDON MISSION 

The  TOPEX/Poseidon  Satellite,  herein  referred  to as TOPEX (Ocean Topology  Experi- 
ment)  was  launched  on August 10, 1992, from the Kourou Space Center in French  Guyana.  The 
satellite  was  launched  into a nominal  circular  orbit with an  altitude of 1336 Km and  an  inclination 
of 66 degrees. The TOPEX is a remote  $ensing  mission with the  primary science objective of 
providing sea surface altimetry  from space . The  TOPEX/Poseidon  program is jointly sponsored 
by The  National  Aeronautics  and Space Administration (NASA) and  Centre National d'Etudes 
Spatiales (CNES). This joint U.S./French  mission  combines  each  country's space ocean  research 
missions. The Jet Propulsion  Laboratory (JPL) manages  the TOPEX  mission for the NASA office 
of Space Sciences Application.  JPL is also  responsible for  the  day  to  day  operation of the satel- 
lite. The Toulouse Space Laboratory manages the  Poseidon  for CNES. TOPEX  was  slated  for a 
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prime mission of three  years, which  was  completed in September  1995. NASA has approved a 
three  years  extension to the  mission. 

The  primary science objective of the TOPEX satellite is to provide highly accurate meas- 
urements of the sea surface elevation  over  all of the  ocean  basins.  The primary science require- 
ment is to provide  geocentric  measurement of the  global ocean sea level accurate to * 14 cm with 
a precision  of If: 2.4 cm  along  track. These requirements  necessitated a frozen  orbit  that  provides 
a fixed  ground  track  every 10 sidereal  days (127  orbit^)^. To  maintain  the  frozen  orbit, t h e  satellite 
occasionally  performs a small thrusting maneuver  referred to as an  Orbit  Maintenance  Maneuver 
(0") or a burn. 

TAME  OBJECTIVE 

An OMM consists of three phases: a planning phase, an  implementation phase, and  an 
execution phase. In the  planning phase, the  spacecraft orbit is determined,  and t h e  required  ve- 
locity  correction (the maneuver AV) is computed. In the  implementation phase, t h e  maneuver AV 
is converted to a sequence of low-level commands (an OMM sequence), which are loaded  into a 
flight computer.  After  the OMM sequence is verified, a proceed  command is issued to  initiate the 
execution phase. Traditionally,  the first two phases are carried  out  on  the  ground. TAME's objec- 
tive was  to  develop  capabilities  for  carrying  out the implementation phase  autonomously, in the 
flight computer. 

In a fully autonomous  approach, all three phases would be carried  out in flight without  any 
ground  intervention.  Although  technically  feasible  for  most  modern satellites, this level of auton- 
omy  was deemed as inappropriate  for TAME. TOPEX flight computers, the  OBC and  the  1750A, 
simply do  not  have  sufficient  unused  capacity to support  completely  autonomous  maneuver  func- 
tions.  Since t h e  execution phase of an OMM has long  been autonomous, it was  decided  that  the 
next  logical step would be to convert the implementation phase to an  autonomous  operation. 
With TAME, t h e  planning phase remains a ground  activity. 

Figure 1 shows  the TAME process.  The  planning  phase is carried  out  on  the  ground by a 
navigation team;  the resulting  maneuver AV and  other  data are uplinked  to  the spacecraft.  The 
implementation phase is carried  out in flight; the  resulting OMM sequence is downlinked  to  the 
ground  for  verification  and  to  the OBC for execution.  The  execution  phase is carried  out in flight 
following  receipt of a command to proceed. 

OMM s e q u e n c e  

Maneuver Implementation - OBC Flight Computer  1750A Flight Computer  
Maneuver  Execution 

Maneuver  AV t I OMM S e q u e n c e  
Other  data command 

Maneuver  Planning 
Topex  Ground System 

Figure 1. TOPEWPoseidon  Autonomous  Maneuver process 

TAME  ARCHITECTURE 

Figure 2 shows TAME's modular  architecture. In this architecture,  the OMM sequence is 
similar to a ground-generated OMM sequence. Thus the OBC utilizes  existing  maneuver  routines 
to execute  the sequence. 



At the heart of the  process is the  planner. The planner processes OMM requests and 
generates t h e  OMM sequence for  execution by the OBC. Inputs to the planner are burn, window, 
search, and turn parameters. Maneuver AV is among  the burn parameters.  The  propulsion 
model computes burn duration using maneuver AV from  the  planner  and tank pressures from the 
OBC. Other inputs and  other  interfaces  between  modules  are  described  later. 
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Figure 2. TAME Architecture 

Communication  between  Flight  Computers 

Communication  between  OBC  and  1750A  provided another  challenge to the TAME de- 
sign. 

Figure 3 graphically  shows t h e  proposed  data  transfer  architecture.  Communication is 
based on the  existing TOPEX command  and  telemetry  architecture.  The  1750A  output  data is 
normally slated for transfer to  ground  via the  Central Unit (C.U.), as part of the spacecraft  teleme- 
try. The OBC also  has access to the  complete  telemetry via the C.U. For TAME, 1750A teleme: 
try is modified by embedding  spacecraft  commands, to be executed by the OBC, in place  of  nor- 
mal  telemetry. In this experiment,  the OBC software  modification  allows  the  OBC to capture, in- 
terpret,  and  verify  the spacecraft  commands from the  1750A.  After  extracting these spacecraft 
commands from  1750A  telemetry, the OBC stores the TAME commands in the  Absolute  Time 
Command Buffer (ATCB) for  execution  at a later  time. This completes  the TAME maneuver im- 
plementation phase. TAME does not change the  maneuver  execution phase. 
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Figure 3. OBC-1750A data transfer  architecture 

1750A SOFTWARE ARCHITECTURE 

For t h e  purposes of the  experiment, the  1750A  computer in which  TAME resides acts as 
a co-processor to t h e  OBC. The  1750A  performs  all  the  calculations  for  planning the  requested 
maneuver  and generates a complete sequence to  implement  the  planned  maneuver.  The OBC 
receives  and stores the  maneuver sequence of absolute timed commands from the 1750A. The 
sequence is then  interpreted  and  executed. 

The  software on  the  1750A computer is substantially  original.  While it was  developed 
specifically  for the  TAME experiment,  the  underlying  software  architecture  and  command  and te- 
lemetry  interfaces  were  inherited  from t h e  pre-TAME application.  The  software  on  the  OBC,  on 
the other  hand, is substantially  unchanged. A patch  was  made to the existing  software to ac- 
commodate  an  interactive  interface with the  1750A,  to  receive  and process a sequence generated 
by the  1750A,  and to allow  detailed  ground  control  over  execution of the  autonomously  generated 
sequence. 

The  inherited  architecture of the  1750A  software  consists of a main program  that  spawns 
two processes referred  to as the high- and low-priority tasks (see Figure 5 on page 7). 

Interacting Modules 

Figure 4 shows  the principal TAME modules  and  the  data  that are transmitted  from  one 
module to another. Functions of the  principal  modules are: 
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Figure 4. Flight Software  Modules  and  Data  Flow 

The planner searches for a violation-free  attitude  profile  that turns  the  spacecraft from its 
initial  attitude to the burn attitude and, after  the burn, returns  the  spacecraft to the  attitude 
it would  have  at  that  time  had  no burn been  performed.  Violations  that  would cause an 
attitude  profile to be rejected are pointing  the spacecraft’s Z-axis too far from nadir, 
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pointing one of two trackers too close to the  sun ,  overheating,  and  exceeding the battery's 
discharge limit. The  initial  and  final attitudes are on a yaw-steering  profile,  which is based 
on the  instantaneous geometry of the spacecraft, Earth,  and S u n .  As an  aid in avoiding 
violations,  the  attitude  profile  includes  two  intermediate attitudes, A and B (see Figure 6 
on page 9). Attitude A is along  the  path  from the  initial  attitude to the burn attitude,  and B 
is along  the  return  path  following  the burn. The turns  account for turn-rate limits, settling 
times, and spacecraft dynamic  behavior.  The  planner  supplies  the  command  translator 
and sequence generator  the  starting  and ending attitude  for each turn.  Attitudes are sup- 
plied as quaternions. Thus, for the four turns,  the  planner  supplies  five  quaternions.  The 
attitude during the burn is constant, so no  additional  quaternions are required to define 
the  entire  attitude  profile. 

The command translator uses the  quaternions  supplied by the  planner to compute a 
sequence of bias  quaternions to be  used by the sequence generator.  The  bias  quater- 
nions interpolate  between  the  planner-supplied  quaternions,  thereby  producing a se- 
quence of uniformly spaced intermediate  attitude  points  along  any turn whose turn angle 
exceeds a lower limit. 

The sequence generator merges t h e  attitude  profile  supplied by the  planner  and  the 
command  translator into a predefined sequence for  preparing spacecraft  hardware for the 
turning and thrusting maneuvers,  and for  restoring  the  coasting  configuration. The prede- 
fined sequence involves  pre-maneuver  conditioning,  such as starting  catalyst-bed  heat- 
ers, opening  fuel  latch  valves,  enabling  propulsion  module  electronics,  selecting  thruster 
configuration,  changing  failure-detection limits, and others. 

The OBC carries  out  the  maneuver sequence produced by the sequence generator. 

The physical models supply several  types of data  used for  defining  the  planned  attitude 
profile. Pressures in tanks A and B, and AV (the velocity  increment to be  imparted), are 
inputs to the  propulsion  model  for  computing burn duration. In fact, t h e  planner  requests 
the  tank pressures from the OBC, and writes them in its specification file; the propulsion 
module reads  the pressures from the  planner spec. 

The command handler receives  commands  from  the  ground  and  from t h e  OBC, and 
routes the commands to the  designated  recipient. The command  handler  transmits to the 
ground via the  telemetry  handler  an  echo of every  command  received  from  the  ground, 
and a copy of every  command  received  from  the OBC. 

The telemetry handler packs  commands, status data, the  maneuver sequence, and 
other results in a packing  buffer,  and  transmits  the  buffer to the ground. It also  transmits 
commands  and  the  maneuver sequence to the OBC.  Telemetry data  comprises  every 
type: string, boolean,  integer,  float,  vector,  matrix,  and  quaternion. 

lntermodule  Communication 

Objects  communicate with one  another by means of flags  and  modes.  Each  flag  or  mode 
belongs to a single  object, but each can  be  read by any  object. The command  handler  commonly 
sets flags (but not modes)  belonging  to  other objects;  other  objects rarely if ever set flags or  other 
variables  that  do  not  belong to them. 

Interacting  Real-Time Processes 

TAME comprises five  real-time processes, as shown in 
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Figure 5. The processes are (1) a main  program, (2) a low-priority task, (3) a high-priority 
task, (4) a command  handler,  and (5) a telemetry  handler. 

Figure 5. Flight Software's  Real-Time Processes 



The  main  program starts the  two tasks, and  then  becomes  inactive.  The tasks cycle in- 
definitely,  calling  procedures in other  objects but never  being  called.  The  command  and  telemetry 
handlers  each  provide  one  procedure  that is driven by an  interrupt stream  (Commandlnterface 
and  Telemetrylnterface),  and  numerous  subprograms  that  are  called from subprograms in the two 
tasks. Procedures  Commandlnterface  and  Telemetrylnterface are independent of one  another. 
The  four processes that  remain  active are described in more  detail in the  following sections on the 
low- and high priority tasks. 

The purpose of the low-priority task, is to execute  compute-bound  modules in the  back- 
ground,  while the high-priority  task services  the Startlnit  command  and  downlink requests, which 
require  immediate  attention. 

Following  initialization,  the  task enters an endless loop,  polling  execution  flags.  The  value 
of each  execution  flag, TRUE or  FALSE, determines whether  the  task  calls  or does not  call the 
corresponding  module,  i.e.,  the  planner,  command  translator,  or sequence generator. 

Each  execution  flag is set only by procedure  Stepcompleted (see 

Figure 5). Each is initialized in its declaration to FALSE, reset to FALSE by the  owning 
module's  initialization  procedure,  and  reset to FALSE by the  procedure  that is called to initiate the 
corresponding step. 

The  low-priority task's endless loop is divided  into six steps. As the figure  shows,  the six 
steps are (1) Initialization, (2) planner  execution, (3) command  translator  execution, (4) sequence 
generator  telemetry to ground, (5) sequence generator midway,  and (6)  sequence generator  te- 
lemetry to OBC. The  code  permits step allocations to be  changed  easily.  The  term "step" always 
refers to a bounded  process in the  low-priority task, never to one in the high-priority task. 

Steps are controlled by MulfiStep commands  issued from the  ground.  Each of the steps 
ends with a call to the  Stepcompleted  procedure, as the  figure shows. The Stepcompleted pro- 
cedure, part of the STATUS object,  receives (1) error status from each  subprogram  completing a 
step, (2) a further-steps-authorized number  from  the  initialization process or  from  any  Multistep 
command,  and (3) any  Startlnit  command  from the ground.  On the basis of these data, Step- 
Completed sets or  omits  setting  any  execution  flag  for  the succeeding step. On the final step, 
there is no  execution  flag  for a succeeding step. Nontheless,  the  StepCompleted  procedure  re- 
t u r n s  control to t h e  caller, so that  the  caller  can  return  control to the low-priority task, which  then 
loops  endlessly  waiting  for a Startlnit  command. In any case, StepCompleted  returns  an  action 
directive  to the caller. 

The  action  directive  that Stepcompleted  returns  can be any  one of three: initialize,  re- 
peat, or proceed.  The initialize  directive is returned in response to a Startlnit  command,  which 
can  be  issued  while  any step is executing  or while the low-priority  loop is idling in the Startlnit  pro- 
cedure.  The  repeat  directive is returned  only  when  the first of the  three  sequence-generator steps 
has  executed.  The  continue  directive is returned  whenever a step completes without  error  and 
further step(s)  are authorized. 

The  content of the  action  directive  usually does not  affect the  response of the  recipient. 
The  low-priority task  continues its polling  loop regardless of directive  content.  The  planner  and 
command  translator  return  control to the low-priority task  regardless of directive  content. Only the 
sequence generator  responds according to directive  content.  Upon  completing its first step, di- 
rective  content causes the sequence generator to (1) repeat  the step, (2) return  control to the  low- 
priority  task in response to a Startlnit command, or (3) proceed to its next (second) step. Upon 
completing its second step, the sequence generator's  responses are (2) and (3) above. Upon 
completing its third step, the sequence generator  returns  control to the low-priority task  regardless 
of directive content,  the same as the  planner  and  command  translator. 
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The  purpose of the high-priority task, is to service  the  Startlnit  command  and downlink 
requests, which  require  immediate  attention, while the low-priority  task executes  compute-bound 
modules in the  background. 

Following  initialization  at  power-up,  the  task  cycles  endlessly  polling  for the Startlnit flag 
and the presence of a queued downlink request.  The  Startlnit  flag  can  be set by the  command 
handler in response to a Startlnit  command.  Downlink requests are placed in the queue when the 
data for  downlinking becomes  available. 

PLANNER  IMPLEMENTATION 

As mentioned  earlier, the planner  supplies five quaternions,  shown in Figure 6 ,  defining 
spacecraft  attitude  at  the  start of the OMM sequence, at  inermediate  point A, during the burn, at 
intermediate  point 6,  and  at the finish of the OMM sequence. Each of the five quaternions  defines 
spacecraft  attitude with respect to the Orbit Reference  Frame  (ORF).  The origin of the  ORF is in 
t h e  spacecraft, and  the  ORF  rotates  around  the center of the  Earth with the Z (yaw)  axis  always 
along the  nadir,  the X (roll)  axis  forward, the Y (pitch)  axis  along  the  negative of the  orbital  angular 
momentum.  The  quaternions  for  attitudes A and B are identical, making spacecraft  attitude  at A 
and B the same with respect to the ORF, but not t h e  same inertially because of ORF  rotation. 

The search has  four  dimensions. These are the  epoch of the burn centroid  and the three 
Euler angles  that  define  intermediate  attitudes A and B. Burn epoch is the  time of the  midpoint of 
the  burn with respect to the 6 AM epoch of the  orbit,  expressed in seconds. The 6 AM epoch is 
the  time  when  the center of the S u n  is in the spacecraft's local  horizontal  plane,  and rising due to 
spacecraft orbital  motion. 

The search for a violation-free  path is performed by procedure planner, one of 19 subpro- 
grams  (procedures and  functions) in the  planner  module.  Additional  subprograms are nested in a 
few of the 19. The search process, including  interactions of procedure  planner with the  other 
subprograms,  can be described in terms of procedure  planner's  code. The planner search 
searches for a violation-free  attitude  path using five nested  loops, as follows: 
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The  two  outermost  loops search in the time dimension.  The  outer  loop selects time win- 
dows within which burn epochs are permissible.  The  next  nested  loop  tries burn epochs within 
the  selected window.  The three innermost  loops set the  Euler angles Phi, Eta,  and Psi that  define 
the  intermediate  attitudes A and B with respect to the ORF (see Figure 7). 

All parameters  used in the  search are loaded by ground commands. Up to five  windows 
and  associated search parameters  are received by procedure  SetWndwParms.  The stepsze for 
searching within a window  and  the three Euler angles are received by procedure  SetSrchParms. 
Burn parameters,  such as AV, are received by procedure  SetBurnParms. Turn  parameters,  such 
as turn rates  and  times, are received by procedure  SetTurnParms. 

The  following paragraphs  describe a few of the  planner's  other  subprograms. 

Given the  quaternion  at  intermediate  attitude A, SlewTolnfo computes its epoch, and  the 
epoch  and  quaternion  at  the  start of the tu rn  that  departs from the yaw steering  profile. It does so 
in two steps. In t h e  first step, SlewTolnfo computes  the  epoch of arrival  at  intermediate  attitude A 
by calling Turntime, which  returns  the  duration  required to tu rn  from  intermediate  attitude A to the 
burn attitude.  The  desired  epoch is obtained by subtracting t h e  tu rn  duration  and  settling time(s) 
from  the  epoch of arrival  at the burn attitude.  SlewTolnfo gets  the  epoch of departure from the 
yaw steering  profile,  and  the  corresponding  quaternion, by calling  Merge,  and  subtracting  the turn 
duration  from  epoch of arrival  at  intermediate  attitude A. 

Called by SlewTolno,  SlewFromlnfo,  and  Merge, Turntime computes  the time required to 
turn from  attitude Q1 to Q2. 

When  called by SlewTolnfo, Merge computes  the  quaternion of departure from  the  yaw 
steering  profile,  and  the  duration  required to tu rn  from the yaw steering profile to intermediate at- 
titude A. When  called by SlewFromlnfo,  Merge  computes  the  quaternion of arrival  at  the  yaw 
steering  profile,  and t h e  duration  required to turn from  intermediate  attitude B to the yaw steering 
profile.  Merge searches for the  epoch  numerically. It uses two search processes, as follows: 
The first search  process depends upon  whether  Merge  was  called by SlewToInfo  or  SlewFro- 
mlnfo. I f  called by SlewTolnfo,  Merge starts with intermediate  attitude A and  the  epoch of arrival 
at  intermediate  attitude A. Merge  then steps backward from that epoch, computing  on each step 
the  corresponding  attitude of the yaw steering  profile,  and  calling  Turntime.  Merge stops stepping 
when the turn duration  returned by Turntime is less than  the  available  time. I f  called by SlewFro- 
mlnfo,  Merge starts with intermediate  attitude B and  the  epoch of departure from  intermediate 
attitude B. Merge  then steps forward  from  that epoch, computing  on each step the  corresponding 
attitude of the  yaw steering  profile,  and  calling  Turntime.  Merge stops stepping when  the  duration 
returned by Turntime is less than  the  available  time.  The second  process is a binary search to 
refine  the  epoch of departure from  or  arrival  at the  the yaw steering  profile,  depending  upon 
whether  Merge  was  called by SlewTolnfo  or  SlewFromlnfo. In either case, Merge computes  the 
corresponding  quaternion,  which it returns to t h e  caller. 

Given t h e  quaternion  at  intermediate  attitude B, SlewFrornlnfo computes its epoch, and 
the  epoch  and  quaternion  at  the finish of the turn that  arrives  at  the  yaw  steering  profile. It does 
so in two steps. In the first step, SlewFromlnfo  computes  the  epoch of departure from  intermedi- 
ate attitude B by calling  Turntime,  which  returns  the  duration  required to turn from the burn atti- 
tude to intermediate  attitude B. The  desired  epoch is obtained by adding  the turn duration  and 
settling  time(s) to the  epoch of departure from the burn attitude.  SlewFromlnfo gets  the  epoch  of 
arrival  at  the  yaw steering  profile,  and the corresponding  quaternion, by calling  Merge,  and  adding 
the turn duration to the  epoch of departure from intermediate  attitude B. 

CornpufeEpochsGlobal, a procedure  neted in procedure  planner,  computes  global ep- 
ochs and  durations  not  already  computed. 
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AnalyzePath analyzes  the  path  or  attitude  profile, from start to finish, in order to detect 
violations of any  one of the  constraints.  Analyzepath does the  analysis in two steps. In the first 
step, it sets up a table of epoch  points  that  cover  the  entire sequence, starting with departure from 
the yaw steering profile  at  the  beginning  of t h e  first turn,  and  ending  at  the  end of the settling  time 
following  arrival at  the yaw steering profile at  the  end of the  last turn.  A minimum spacing sepa- 
rates  consecutive  epoch  points, and a maximum  number of epoch  points are allowed in the  dura- 
tion of any one tu rn  or coast  duration. In the  second step, Analyzepath  calls  AnalyzePoint  for 
each  epoch point in the  table. AnalyzePoint analyzes  the point  supplied by Analyzepath, in order 
to detect violations of any  one  of  the constraints. DownlinkSrchParmsAndesolts is called  re- 
peatedly during the search  process  and  once  at the conclusion of the search process. When 
called during t h e  search process, 

The command translator uses the quaternions  supplied by t h e  planner to compute a se- 
quence of bias  quaternions to be  used by t h e  sequence generator.  The  bias  quaternions  interpo- 
late  between  the  planner-supplied  quaternions,  thereby  producing a sequence of uniformly spaced 
intermediate  attitude  points  along  any turn whose turn angle exceeds a lower limit. 

The  method for computing  the  bias  quaternions is chosen to match  peculiarities of the 
Topex  steering  algorithms.  Topex yaw steering is distinct from roll and  pitch steering.  The  bias 
quaternions are intended to drive  roll  and  pitch axes but not  the  yaw axis. 

The  bias  quaternions are computed by interpolating  only the roll and  pitch  Euler angles. 
The  algorithm is: 

1. For the roll  and  pitch axes, compute  an  intermediate  Euler  angle as initial + (final - initial) * 

i / n, where n is the  number of steps, i is the step number in the  range 1 .. n, and  "initial" 
and "final" refer to t h e  initial  and  final  roll  or  pitch  Euler angles. Thus,  for each of the two 
axes, the first intermediate Euler angle is one step removed  from the  initial  Euler angle, 
and t h e  last  intermediate  Euler  angle is identical to the  final  Euler angle. 

2. For t h e  yaw axis, set the  intermediate  Euler  angle to zero. 

3. Extract the bias  quaternion  from  the  product of the two direction  cosine  matrices  that  cor- 
respond to the  pitch  and  roll  intermediate  Euler angles. 

For  generality,  the code  includes in the matrix  product  the  identity  matrix  corresponding to 
the  zero-value yaw  Euler angle. This algorithm  interpolates  poorly  when  the  pitch  and  roll angles 
are small  compared to the  yaw angle. 

SEQUENCE GENERATOR  MODULE 

The sequence generator produces a sequence of stored  commands  (Maneuver Se- 
quence) required to perform  an OMM, similar to the sequence generated using ground-based 
software tools. SEQGEN merges  the  attitude profile  supplied by the  planner  and  the  command 
translator into a predefined sequence for  preparing  spacecraft  hardware  and  software  for  the 
turning and thrusting maneuvers, and  for  restoring  the  coasting  configuration. 

The  architecture of the SEQGEN is described in Figure 8. The predefined sequence in- 
volves  pre-maneuver  conditioning,  such as starting  catalyst-bed heaters, opening  fuel  latch 
valves,  enabling  propulsion  module  electronics,  selecting  thruster  configuration,  changing  failure- 
detection limits, and  others. 

The  SEQGEN  has  three  primary  software  interfaces,  the  command  translator,  the data- 
base and t h e  telemetry  formatting  module.  To simplify the  design,  the  SEQGEN uses 6 hard- 
coded  templates, which describe  the pre  and  post  maneuver  commands. These templates  define 
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the  command  and  the  relative time interval to the next  command but do  not  define  the  absolute 
time. This allows  the TAME software to produce a maneuver sequence for  any  desired  time 
frame.  The  remaining inputs for the sequence are retrieved  from t h e  common data area. These 
inputs may  have  been uplinked from the  ground  or  calculated by another  module.  The SEQGEN 
must sort the  inputs from the CMD Translator  based upon  time  and integrate  them  into  the  prede- 
fined sequence. The  integration process  also involves  checking  and  reorganizing  the  command 
sequence based upon Spacecraft  constraints.  The  outputs of the SEQGEN consist  of  data  that 
describe a single OBC command  and  timetag. These data are transferred to t h e  Telemetry  For- 
matting  module  for  transfer to the OBC and to the  ground. 

+++++++++++***+++++*++***+**++*+*+*+***+++++++*++++****++++*++**+++*+++***++*++*+++*+*++++**+++++*++ 
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Figure 8. Sequence Generator Data  Flow 

The sequence generator merges  the  attitude profile supplied by the  planner and the 
command  translator into a predefined sequence for  preparing spacecraft  hardware for the turning 
and thrusting maneuvers,  and for  restoring  the  coasting  configuration.  The  predefined sequence 
involves  pre-maneuver  conditioning,  such as starting  catalyst-bed heaters, opening fuel latch 
valves,  enabling  propulsion  module  electronics,  selecting  thruster  configuration,  changing  failure- 
detection limits, and others.  The sequence generator  comprises two  major parts,  the sequence 
generator  procedure and the compute sequence procedure. 

Procedure  SeqGenerator controls the  steps of the  low-priority  task  whereby the  se- 
quence is repeatedly  generated  and  transmitted to the ground  and then, when a new  Multistep 
command is received  that  authorizes further step(s), generating the  sequence for  transmission to 
the  OBC. In this role,  SeqGenerator is an  interface  between  the  low-priority  task  and  the se- 
quence  generator,  and  also  an  interface  between  the sequence generator  and  the  Stepcompleted 
procedure. 

The  procedure  consists of the following parts: 

1. In an infinite loop, SeqGenerator  repeatedly sets the  destination  to  be  the  ground  and 
calls  procedure  ComputeSequence,  and then procedure Stepcompleted with a FALSE 
error  flag (signifying no error), until Stepcompleted  returns  an  action  directive  other  than 
repeat. 

2 .  SeqGenerator tests for  authorization  to  telemeter  the sequence to the OBC by calling 
Stepcompleted with a FALSE error  flag. I f  Stepcompleted  returns  the  action  directive 
initialize, SeqGenerator  returns  control  to the low-priority task  rather  than  recomputing  the 
sequence for transfer to the OBC. 

3. SeqGenerator sets the  destination to be the OBC,  and  calls ComputeSequence and  then 
Stepcompleted with the  resulting  error  flag.  When  Stepcompleted  returns  control to Se- 
qGenerator,  SeqGenerator  returns control  to  the  low-priority task to enable the task to run 
another case if and  when a Startlnit  command is received  from  the  ground. 

TELEMETRY  HANDLER  ORGANIZATION 

Figure 9 shows how the major components of the telemetry  handler are organized. The 
telemetry  handler  provides  two  telemetry channels, one for subprograms of TAME'S low-priority 
task and the  other for subprograms of the high-priority task. Thus subprograms from  both tasks 
vie  for services by t h e  telemetry  handler  concurrently  and  independently. 
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Figure 9. Telemetry  Handler  Organization 

The two SetDestination  procedures give one  channel  at a time access to the  packing  pro- 
cedures. The  packing  procedures  write  telemetry data from the  current  channel's  subprograms 
into a buffer (not shown in the  figure).  Procedure  Packcompleted  notifies  procedure  Telemetry- 
Interface  that  the  buffer just packed is ready to be  transmitted. Packcompleted  also  participates 
in buffer  and  channel  management.  Procedure  Telemetrylnterface  reads the data from the  buffer, 
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and  transmits  all  data to both the OBC and  the  ground.  Procedure  Telemetrylnterface  has  no 
control  connection with other  components of the  telemetry  handler. It is invoked by a regular 
stream of telemetry  interrupts. This is the  telemetry  handler's  only  interrupt-driven  subprogram. 

MULTISTEP  COMMANDS 

The  Multistep concept, generalizing  the single-step  concept, is to uplink one or more 
commands  authorizing TAME to take a designated  number of fur ther  steps. The Multistep  com- 
mand  includes a single  integer  whose  value designates the number of steps that TAME is author- 
ized to take following  completion of the step underway  or  already  completed. I f  the  value is zero, 
TAME idles until it receives a new  Multistep  command  or a Startlnit. I f  a Multistep  command is 
received  and its value is greater  than  zero, TAME takes  the number of steps designated  and then 
returns to idling. Thus t h e  value  can  always  be chosen to authorize TAME to complete  all  proc- 
essing. The  default  for  the  number of steps authorized is chosen to enable TAME to run to com- 
pletion. Its value is five, one less than  the  total  number of steps that TAME can take, because it 
applies  after  the initialization step has  been  taken. The default is first set when TAME is first ini- 
tialized,  and it is restored each time TAME is reinitialized. Thus it is never necessary to uplink a 
Multistep command if it is intended for TAME to run to completion. 

EXPERIMENT TEST AND  VERIFICATION  PLAN 

The  integration  and test of the TAME system  was  driven by, the  design  and  implementa- 
tion process.  Therefore,  before  discussing  the I&T process in detail, this section will discuss  the 
TAME design  and  implementation process and  how it influenced t h e  test  process. 

At a very high level the  development  can  be  broken  down  into 4 elements. These are 

0 TAME Algorithm  Development, 

TAME Flight SW Implementation, 

Embedded  System  (1750A)  Development,  and 

0 OBC S W  Development. 

Each step is discussed in more  detail  below. 

The TAME function,  planning a constraint  free  attitude  trajectory  and  creating a maneuver 
sequence, was  originally  developed in two environments. It was  developed  partially in MATLAB 
and  partially in FORTRAN. FORTRAN  was  used  wherever  existing  functions  were deemed suit- 
able for reuse. This occurred, for example, in the case of orbit  models.  New  functions  were im- 
plemented in MATLAB. 

For the flight implementation,  the  algorithms  were  transcribed to ADA and  tested  on a 
VAX workstation. TAME Functional  testing  was also  done in the MATLAB environment as part of 
the  algorithm  development process. 

The  software on the  embedded  system is a synthesis of code from  two sources. The 
fundamental  software  architecture,  interprocess  communications,  and  external  interfaces are 
substantially  inherited. These functions are culled  from the  previous  application  code  and  tested 
in a stand-alone fashion  on a 1750  target  computer.  The  second  component is the TAME Flight 
SW. This software, which is based on the MATLAB and FORTRAN code  discussed  earlier, is 
integrated with the  inherited  software  and  ported to the  1750. 

Figure  10  depicts  the TAME test  environment. 
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At each step in the  development,  realistic  test cases are used to verify the functionality of 
the  planning  software. These test cases fall  into  two categories. The first of which emulate  previ- 
ously  conducted 0”’s by restricting the planning degrees of freedom.  The  spacecraft  attitude is 
required to stay nadir  pointed until just before the burn and  the  only  free  variable is the burn ep- 
och. In these test cases, the  actual spacecraft telemetry is the “truth set” against which the TAME 
planning  function is evaluated.  The  other class of functional  test cases are those which  allow  off 
nadir  pointing during the turn to the burn attitude. These test cases take  advantage of the TAME 
attitude  planning  capability to “walk around” a constraint. The functionality  and  performance of the 
TAME S W  in these cases is verified by analysis. These test cases were  followed by project ap- 
proved acceptance test cases. Table 1 summarizes  the steps taken during the formal phase of 
the TAME tests. 

FLIGHT DEMONSTRATIONS 

Three in-flight tests have  been  planned. These tests were  planned to be executed  incre- 
mentally, with increasing  complexity, in order to reduce  the risk to the  satellite  and to increase 
confidence. 

0 Test number one involved  loading of the 1750A  software  and running multiple  solutions. 
This was  executed  successfully on  November 17,  1997. Two  OMM sequences were 
generated  and  telemetered to ground.  Both sequences were  for the same AV request, 
but one produced a TOPEX type  solution,  maintaining  nadir  pointing  throughout  the  ma- 
neuver;  while  the second solution  demonstrated TAME’S capability of going  off-nadir  to 
achieve its objectives.  Both generated  solutions  were  then  tested  on t h e  testbed to en- 
sure validity.  The  solution  was  not  transferred to the OBC. 

0 Test number two will include  the  OBC  patch  and will transfer  the  generated sequence to 
the  satellite  absolute time  command  buffer (ATCB). However,  there are no  plans to fol- 
low through  and  fire the thrusters. This process  allows  schedule flexibility, as 
TOPEWPoseidon  maintains  strict  requirements  on OMM executions  periods. 

0 Finally, Test number three, will go  through  and  complete  the  whole end-to-end process. 

We are currently  awaiting  project’s  approval  for  execution of the  later two tests. 
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9 Test B e d  X Accep- 
tance 
Tests 

Table 1. TAME test cases. 

Figure 11 thru show some of the results of the first flight experiment. 

Roll and Pitch of SC During Maneuver 
1.5 I I I I I t I I , - 

1 1 roll 

-0.5 1 I I I I I I I I I 
-350 -300  -250  -200  -150  -100 -50 0 50 100  150 

Orbit Angle in Degrees 

Yaw of SC During Maneuver 
20. I I I I I I I 1 I 

0 -  maneuver yaw - 

-" z -20 - nominal yaw - 
2 
0" -40- 

a, -60- 

L 
cn - 
S ._ - - 
0, 

2 -80 - 
. - , , , . 

, 
, . , . , . , , 

-100- , , ' . , 
/ 

. . , 
I I I I I I I " - 

-120 
- 

-350 -300  -250  -200 -150 -100 -50 0 50 100 150 
Orbit  Angle  in Degrees 

Figure 11. Yaw, Roll and  Pitch  Angles During TAME Maneuver 
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Figure 12. Star  Tracker S u n  Angles During TAME Maneuver 
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Figure 13. Primary  Thermal  Constraint During  TAME Maneuver 
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Figure 14. Battery State of Charge During TAME Maneuver 

CONCLUSIONS 

The  feasibility for autonomous  propulsive  maneuver  planning sequence generation  was 
demonstrated in 1994.  The  1995  effort  generalized  the  algorithms  allowing  arbitrary  Euler turns  in 
place of the single axis turns and  the  code is being  written to comply with flight software  code re- 
quirements. The TOPEX Autonomous  Maneuver  Experiment (TAME) applies these concepts to a 
real  operational  nadir  pointed  orbiter. 

The  challenge of the TAME experiment will not  be  limited to the  maneuver  planner  algo- 
rithm. Real  mission  constraints  and  oversights  would  have to be considered for  their full impact  to 
ensure a safe experiment. 
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Do: 

Remove  references to the  epemeris. 

Redraw  Figure 1 because it says getting  tank  temperature  instead of pressure, and  other 
things? It doesn't seem to fit the associated  text. 

Redraw Figure 2, including  removing references to the  ephemeris,  and fixing other  items. 

Redraw  Figure "TAME Search Algorithm", fixing Ta  and  making  other  corrections  shown 
in blue  book. 

Correct  any uses of t h e  term "constraint"  that  actually  mean  "constraint  violation" 

Remove  all paragraphs of style  Normal. 

Restore  left-right  orientation of Maneuver-Profile-  and  TAME-Search  figures. 

Write section on risk mitigation. 

Finish fixing figures,  and  their  citations. 

Make  text  uniform in font. 

Make text uniform in columns 

Done Space fix 

Spell  check 

Search for <?> 

Items  wrong with figure 1 : 

Fixed. It's not a thruster  module but a propulsion  module. 

Fixed. It's not the GPS computer but the  1750A  computer. 

Fixed. It's not a command  file but a maneuver sequence. 

Yes.  Has OBC been  introduced? Is it the "TOPEX OBC"  or just the OBC? 

Fixed.  We don't  actually  consider a solar  ephemeris,  and  BetaPrime is only input from 
S/C ephemeris. And BetaPrime comes from  ground, not internally. 

Fixed.  S/C  initial state does not  come  from OBC. 

0 

Items  wrong with figure 2: 

Planner  control doesn't  exist. 
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